dspy.TwoStepAdapter¶
dspy.TwoStepAdapter(extraction_model: LM, **kwargs)
¶
Bases: Adapter
A two-stage adapter that
- Uses a simpler, more natural prompt for the main LM
- Uses a smaller LM with chat adapter to extract structured data from the response of main LM
This adapter uses a common call logic defined in base Adapter class. This class is particularly useful when interacting with reasoning models as the main LM since reasoning models are known to struggle with structured outputs.
Example:
import dspy
lm = dspy.LM(model="openai/o3-mini", max_tokens=16000, temperature = 1.0)
adapter = dspy.TwoStepAdapter(dspy.LM("openai/gpt-4o-mini"))
dspy.configure(lm=lm, adapter=adapter)
program = dspy.ChainOfThought("question->answer")
result = program("What is the capital of France?")
print(result)
Source code in dspy/adapters/two_step_adapter.py
Functions¶
__call__(lm: LM, lm_kwargs: dict[str, Any], signature: type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]]
¶
Execute the adapter pipeline: format inputs, call LM, and parse outputs.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lm
|
LM
|
The Language Model instance to use for generation. Must be an instance of |
required |
lm_kwargs
|
dict[str, Any]
|
Additional keyword arguments to pass to the LM call (e.g., temperature, max_tokens). These are passed directly to the LM. |
required |
signature
|
type[Signature]
|
The DSPy signature associated with this LM call. |
required |
demos
|
list[dict[str, Any]]
|
List of few-shot examples to include in the prompt. Each dictionary should contain keys matching the signature's input and output field names. Examples are formatted as user/assistant message pairs. |
required |
inputs
|
dict[str, Any]
|
The current input values for this call. Keys must match the signature's input field names. |
required |
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
|
List of dictionaries representing parsed LM responses. Each dictionary contains keys matching the |
list[dict[str, Any]]
|
signature's output field names. For multiple generations (n > 1), returns multiple dictionaries. |
Source code in dspy/adapters/base.py
acall(lm: LM, lm_kwargs: dict[str, Any], signature: type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]]
async
¶
Source code in dspy/adapters/two_step_adapter.py
format(signature: type[Signature], demos: list[dict[str, Any]], inputs: dict[str, Any]) -> list[dict[str, Any]]
¶
Format a prompt for the first stage with the main LM. This no specific structure is required for the main LM, we customize the format method instead of format_field_description or format_field_structure.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The signature of the original task |
required |
demos
|
list[dict[str, Any]]
|
A list of demo examples |
required |
inputs
|
dict[str, Any]
|
The current input |
required |
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
|
A list of messages to be passed to the main LM. |
Source code in dspy/adapters/two_step_adapter.py
format_assistant_message_content(signature: type[Signature], outputs: dict[str, Any], missing_field_message: str | None = None) -> str
¶
Source code in dspy/adapters/two_step_adapter.py
format_conversation_history(signature: type[Signature], history_field_name: str, inputs: dict[str, Any]) -> list[dict[str, Any]]
¶
Format the conversation history.
This method formats the conversation history and the current input as multiturn messages.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The DSPy signature for which to format the conversation history. |
required |
history_field_name
|
str
|
The name of the history field in the signature. |
required |
inputs
|
dict[str, Any]
|
The input arguments to the DSPy module. |
required |
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
|
A list of multiturn messages. |
Source code in dspy/adapters/base.py
format_demos(signature: type[Signature], demos: list[dict[str, Any]]) -> list[dict[str, Any]]
¶
Format the few-shot examples.
This method formats the few-shot examples as multiturn messages.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The DSPy signature for which to format the few-shot examples. |
required |
demos
|
list[dict[str, Any]]
|
A list of few-shot examples, each element is a dictionary with keys of the input and output fields of the signature. |
required |
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
|
A list of multiturn messages. |
Source code in dspy/adapters/base.py
format_field_description(signature: type[Signature]) -> str
¶
Format the field description for the system message.
This method formats the field description for the system message. It should return a string that contains the field description for the input fields and the output fields.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The DSPy signature for which to format the field description. |
required |
Returns:
| Type | Description |
|---|---|
str
|
A string that contains the field description for the input fields and the output fields. |
Source code in dspy/adapters/base.py
format_field_structure(signature: type[Signature]) -> str
¶
Format the field structure for the system message.
This method formats the field structure for the system message. It should return a string that dictates the format the input fields should be provided to the LM, and the format the output fields will be in the response. Refer to the ChatAdapter and JsonAdapter for an example.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
type[Signature]
|
The DSPy signature for which to format the field structure. |
required |
Source code in dspy/adapters/base.py
format_task_description(signature: Signature) -> str
¶
Create a description of the task based on the signature
Source code in dspy/adapters/two_step_adapter.py
format_user_message_content(signature: type[Signature], inputs: dict[str, Any], prefix: str = '', suffix: str = '') -> str
¶
Source code in dspy/adapters/two_step_adapter.py
parse(signature: Signature, completion: str) -> dict[str, Any]
¶
Use a smaller LM (extraction_model) with chat adapter to extract structured data from the raw completion text of the main LM.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signature
|
Signature
|
The signature of the original task |
required |
completion
|
str
|
The completion from the main LM |
required |
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
A dictionary containing the extracted structured data. |
Source code in dspy/adapters/two_step_adapter.py
:::